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Aliquid, contained in a quarter plane, undergoes steady motion due to  thermocapillary 
forcing on its upper boundary, a free surface separating the liquid from a passive gas. 
The rigid vertical sidewall has a strip whose temperature is elevated compared with 
the liquid at infinity. A boundary-layer analysis is performed that is valid for large 
Marangoni numbers M and Prandtl numbers P.  It is found that the Nusselt number 
N for the horizontal heat transport satisfies N N min ( M ,  Mi*). Generalizations are 
discussed. 

1. Introduction 
Motion results whenever a temperature gradient is imposed along the (sufficiently 

clean) interface between, say, a liquid and a passive gas. This thermocapillary effect 
is induced from the balance on the interface of the bulk shear stress in the liquid and 
the surface-tension gradient along the interface. This interfacial stress is transmitted 
to the bulk by viscous forces. 

Forced thermocapillary flows occur in combustion configurations in which a flame 
propagates over a liquid fuel. Here the large temperature gradient along the fuel 
surface and the thermocapillary flow generated can dominate the characteristics of 
the flame by controlling the fuel-mixing properties (see e.g. Sirignano & Glassman 
1970; Torrance 197 1). Perhaps the simplest such flame-induced motion involves the 
flow of molten paraffin near the wick of a burning candle (Adler 1970). Clearly, a 
similar configuration is one involving a spot weld, where a liquid-metal pool is formed 
by a heat source. Although the material properties of the fluid are different, 
thermocapillary effects should be involved under similar conditions. 

Thermocapillary flows are known to be important in the containerless processing 
of single crystals. Consider the configuration shown in figure 1 in which a cylindrical 
solid passes through a heating coil, melts, and then resolidifies into a single crystal. 
The nature of the crystal formed depends on the local nature of the thermal and 
fluid-flow fields, so that there is a strong coupling between the fluid dynamics and 
the growth dynamics of the crystal. Even if the melt consists of a single component, 
and gravity is absent, there is a thermal-convection field in the melt (as shown), which 
is driven by variations in the surface tension with the temperature. 

Sen & Davis (1982) consider steady Marangoni convection in a rectangular slot that  
is differentially heated. They use asymptotics for small aspect ratio (thin, flat slots) 
and obtain representations for the flow and thermal fields. However, their analysis 

7 Present address : Department of Applied Mathematics and Theoretical Physics, Silver Street, 
Cambridge CB3 9EW, U.K. 
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FIGURE 1. Sketch of the geometry of the float-zone crystal-growth process including streamlines 
of induced thermocapillary convection. 

is valid only for small-to-moderate Marangoni numbers M .  The flows in the melt of 
the float-zone process may involve rather large values of M .  

We formulate the canonical M-too convection problem. This involves forced steady 
convection in a quarter-plane. We treat the case where the flow possesses either no 
viscous boundary layers, or relatively thick ones compared with the thin thermal 
boundary layers (which convey all the heat). We examine this case, associated with 
large-Prandtl-number liquids, and obtain estimates for the Nusselt number that 
measures convective transport parallel to the fluid interface. 

There are many similarities between M +co thermocapillary-driven convection in 
slots and Ra +03 buoyancy-driven convection, where Ra is the Rayleigh number. 
Blythe & Simpkins (1977) review the latter topic. In the present work on the 
thermocapillary problem we apply a similar approach to that developed by Roberts 
(1977, 1979) for the buoyancy-driven case. However, we find that in the present 
problem the scalings and the boundary-layer structures are both quite different from 
the corresponding buoyancy-driven case. Finally, we discuss generalization to 
convection in fully enclosed slots. 

2. Mathematical formulation 
Consider a quarter-plane containing an incompressible Newtonian liquid of density 

p,  thermal diffusivity K and kinematic viscosity v. Given the Cartesian coordinate 
system ( 2 , g )  shown in figure 2, we define the velocity vector i.2 = (.;,a) and the 
pressure @ and temperature p .  

The upper surface is an interface between the liquid and a passive gas having 
negligible density, viscosity and thermal conductivity. The wall at 2 = 0 is rigid; it 
is maintained at temperature pH for - d  < tj < 0 and it is perfectly insulating for 
- oo < Q < -d .  The ambient temperature for 2z+~2+oo is given by r f , .  The liquid 
motion is driven by thermocapillarity on the upper surface. We assume that the 
surface tension u depends linearly on 5!: 

u = cro-y(!P-P C ) .  (2.1) 

We scale the governing system by following, say, Sen & Davis (1982). The length, 
pressure and temperature scales are respectively d ,  y(pH - pc)/d and pH - pc, and 
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FIQURE 2. Sketch of the quarter-plane region containing the fluid. The planar free surface lies 
on 9 = 0 while the rigid sidewall lies on P = 0. 

we define a Marangoni velocity uM = y(pH - p C ) / p u .  Given these scales, the following 
dimensionless parameters emerge : 

the Reynolds number 

the Marangoni number 

K Pl'K 

and the capillary number 

c=-- PVuM - ? ( T H - T C )  

C O  VO 

( 2 . 2 a )  

(2 .2b)  

(2 .2c)  

Note that the Prandtl number P = u / K  is given by 

P = M / R .  ( 2 . 2 d )  

We shall assume that C+O, which implies (Sen & Davis 1982) that the mean surface 
tension uo is large enough to resist deformation of the upper surface. Thus, the upper 
surface lies a t  $ = 0. 

If we introduce non-dimensional (caretless) quantities, and measure temperature 
from pc, then the governing equations become 

RU-VU = -Wp+V2u,  V 'U = 0, M u - V T  = V 2 T .  (2 .3a ,  b, c )  
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I- T(0,y) = 1 ( - 1  < y < O ) ,  

T,(O,y)=O ( - m < y < - 1 ) ,  
(2.4b) 

UJX, 0) + T'(x, 0) = V(Z, 0) = TJz, 0) = 0, (2.4~) 

where we have taken the interface to be a perfect thermal insulator. 
We wish to analyse system (2.3)-(2.4) for large values of the Marangoni number. 

In this case we expect that all variations in liquid temperature will be confined to 
thin boundary layers of thickness A and 6 on x = 0 and y = 0 respectively. 

A measure of the heat transport across constant-x sections of the layer is the 
Nusselt number N(x) : 

N = (MuT-T,)dy. 

Since the interface is a perfect insulator, N is x-independent, so that 

(2.6~) 

Furthermore, away from the rigid wall, most of the heat flux will occur in the 
free-surface boundary layer within which streamwise diffusion is negligible. Hence 

N - MJ'1, uTdy (x > 0). (2.6b) 

We can use (2.6a, b) to obtain appropriate scalings for the M+m asymptotic limit. 
For the moment we assume that inertia and viscous forces are in approximate balance 
everywhere (so that viscous boundary layers are absent) and there is a single 
lengthscale governing the viscous fl0w.t 

For large M we denote the magnitude of the core velocity by M-b, and suppose 
that A - M-f and 8 - M-d.  Then, within the thermal boundary layer adjacent to 
the rigid wall, we have, as a result of the no-slip condition and continuity, that 
v - AM-b = M-b-f and u - A2M-b = M-b-2f;  within the surface thermal layer the 
velocity magnitudes are given by u - MPb, uy - M-b and v - 6M-b = M-b-d. Using 
these scalings, it follows that, if the advection terms and the dominant diffusion terms 
of (2.3~) are to balance within both boundary layers, then 

l - b  = 3f, l - b  = 2d. (2.7a, b) 

Furthermore, adjacent to the rigid wall T - 1, and we suppose that within the surface 
layer T - M-*. With these scalings, the thermocapillary boundary condition in (2.4~) 
yields 

a = b, (2.7~) 

while the Nusselt-number condition (2.6) gives 

l-a-b-d = f. (2.7d) 

We solve system (2.7) and obtain the scalings 

a = b = '  79 d = + ,  f=$. (2.7e) 

t The arguments concerning the single scale are made for reasons of clarity. This restriction will 
be relaxed later in the text. 
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If we now return to (2.3a), we see that all terms are comparable in the momentum 
balance in the interior if 

R - M !  so tha t  P - M .  (2.7.f) 

P = M-#P, (2.7 9) 

We therefore introduce the scaled Prandtl number 

We note that, because P % 1 ,  these scalings give different typical surface velocities, 
say, from those proposed by Ostrach (1982) for P = O(1). 

The behaviour of system (2.3)-(2.4) thus reduces to three simplified problems: two 
boundary problems plus the flow in the isothermal 'core'. 

Core flow 
In accordance with scalings (2.7e) we define the velocity field 

( u , 4  = M-T&,, - 4  ox)+- ... (2.8) 

where the stream function 4, is negative. We shall see below that all thermal 
variations are negligibly small, so that the core solution to the heat equation ( 2 . 3 ~ )  
is zero. The equation of motion ( 2 . 3 ~ )  becomes 

where 

( 2 . 9 ~ )  

(2.9b) 

The rigid-wall boundary conditions on x = 0, and the kinematic boundary condition 
on y = 0, become 

4, = $ox = 0 (x = O), lira = 0 (y = 0). ( 2 . 9 ~ )  

The final boundary condition is the Marangoni condition ( 2 . 4 ~ )  on the free surface. 
This will be given in simplified form after solutions within the thin thermal boundary 
layers have been found. 

Boun'dary layer on the rigid wail 

We use the scalings (2.7e), write 

x = M-fX, T = To + . . . , (2.10) 

and note that the no-slip boundary condition implies that 4o - ~ ~ ~ ~ ~ ~ ~ ( 0 ,  y). If we 
substitute into, the heat equation ( 2 . 3 ~ )  and the thermal boundary conditions, we 
obtain 

i * x 2 4 O X 2 , ( O 1  Y) To, - ~ 4 0 x x ( O ,  y) To, = T O X X ,  ( 2 . 1 1 ~ )  

/ 

T'(O,y)= 1 ( - 1  < y < O ) ,  Tox(O,y )=O ( - c o < < Y - ~ ) .  (2.11b) 

By means of a transformation used by Lighthill (1950) and Acrivos & Goddard (1966), 
Roberts (1977) has found the solution to (2.11) which decays as X+m:  

/ [I'(&)]-l j- g - k c  de ( -  1 < y < 0), 
To = x 

10 (-00 < y < - l ) ,  
where 

( 2 . 1 2 ~ )  
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The scaled Nusselt number 
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N N M - ~  

is therefore given by 

( 2 . 1 3 ~ )  

(2.13b) 

Boundary Eayer on the free surface 
The scalings (2.7e) suggest the expansions 

y = M-gY, T = M-fT,+ .... (2.14a, b )  

The condition of zero crossflow through the free surface gives that +o - Y + ~ ~ ( X ,  0). 
If we substitute forms (2.14) into the heat equation ( 2 . 3 ~ )  and the free-surface 
conditions (2.4c), we find that 

+oy(x, 0) T,, - Y+O&> 0) TOY = Z Y Y ,  ( 2 . 1 5 ~ )  

T , , = O  ( Y = O ) ,  T,+o (Y+co). (2.15b) 

In  order for system (2.15) to be well-posed, a further condition is needed at x = 0. 
This condition is found by examining the heat balance nearer the corner, although 
there is no need to explicitly solve the problem in the corner. As will be explained 
in greater detail in $3, as the flow enters the corner, heat is effectively only being 
convected along streamlines (since diffusion is negligible). However, as a result of the 
change from rigid to free-surface boundary conditions, the streamlines move closer 
together and eventually diffusion becomes important in a region adjoining the free 
surface and close to the corner. Far downstream from this ‘diffusion’ region, the 
details of the solution within this region are unimportant, and the flow effectively 
sees only a source of heat of magnitude B. The required solution to system (2.15) 
is therefore as given by Roberts (1977) : 

with 

- F  

where 

(2.1 6a) 

(2.16b) 

Using (2.16), the Marangoni balance of ( 2 . 4 ~ )  can be transformed to obtain the final 
boundary condition to (2.9) : 

2(.rcX3)4 +oy&, 0) = N$O&, 0). (2.17) 

Reduced Navier-Stokes problem 
Equations (2.9a, b )  and boundary conditions ( 2 . 9 ~ )  and (2.17) specify a Navier-Stokes 
problem in which all the parameters can be scaled out. A parameter is reintroduced 
only when (2.13) is used to solve for p. Following a suggestion of a referee, we 
therefore scale Nand Pfrom (2.9) and (2.17) by writing 

+o = W’ (x, Y) = JW, !I)’ (2.18) 
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FIQURE 3. Regions of the solution to (2.19): (i) Stokes flow; (ii) region where all terms in ( 2 . 1 9 ~ )  
balance ; (iii) surface viscous boundary layer; (iv) inviscid core ; (v) ' backwards ' viscous boundary 
layer (see 8 4). 

where L = PsF-l. Equations (2.9), (2.12b), (2.13b), (2.16b) and (2.17) then become 

( 2 . 1 9 ~ )  

Different regions of the solution to (2.19a-c) can be identified by noting that 
r" = (Z2+iJ2)& can be viewed as a local Reynolds number of the flow. Where r" = O(1) 
all terms in the governing equations are of equal importance and a numerical solution 
is required. However, analytical progress should be possible for r" 4 1 and r" $ 1 .  Near 
the corner a Stokes-flow region will exist, while far from the corner the flow will consist 
of an inviscid core and viscous boundary layers (see figure 3). We also note from 
(2.19d) that ,  in the limit L-tm (i.e. P-too), i t  should be possible to  determine by 
solving only in the Stokes-flow regime. Conversely, for L+O (i.e. P+O), we might 
expect to determine by just examining the far-field regime. 

In  the next two sections we consider the Stokes flow and far-field regimes in turn. 
Particular reference will be given to  the limits P+m and P+O. 

3. Stokes-flow region 
For r" < 1 ( 2 . 1 9 ~ )  simplifies to 

P4$ = 0. 
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If p $  1 then the integral in (2.19d) can be evaluated asymptotically using (3.2) to 
obtain 

(3.3a) 

Hence for p $ 1 the behaviour of Nusselt number with Marangoni number is 

N - 1.06m.  (3.3b) 
The most striking physical behaviour of the solution (3.2) is the increase of fluid 

speed as one approaches the corner along the free surface. This is in contrast with 
the analogous BBnard problem, studied by Roberts (1977), for which the fluid speed 
falls as one approaches the corner. Further, despite this increase in fluid speed, the 
ratio of viscous forces to inertial forces increases. Hence the present scaling breaks 
down closer to the corner not because of inertial effects, but because of inadequacies 
in the description of the temperature distribution. The resulting asymptotic regions 
are illustrated in figure 4. 

Region IV  is the 'diffusion' region mentioned in $2. Since we have hypothesized 
that heat, is convected in region VI (i.e. the region where the temperature is non-zero 
near the corner), it  follows that T - 1 in region IV. The size of this region can now 
be deduced from (2.16) and (3.2), for we see that - M! when x - Z2M-q and 
y = M-? Y - RM-4. So in region V (x - y - P M - ) )  the stream function is no longer 
given by (3.2) to leading order because modifications are necessary to the Marangoni 
boundary condition (2.17). 

The mathematical problems to be solved in regions IV and V are straightforward 
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FIGURE 5. Sketch of the surface speed. 

to formulate. In  region IV it  again proves necessary to solve the thermal boundary- 
layer system (2.15). However, whereas in region I1 x = 0 can be regarded as a point 
source, in region IV the temperature profile a t  x = 0 needs to be related to that a t  
y = 0 in the rigid-wall boundary layer (region I) .  Because heat is convected along 
streamlines in region VI, this matching is easily achieved by introducing streamline 
coordinates (Roberts 1977 ; Kuiken 1978). Roberts (1977) gives an analytical solution 
to the resulting problem. Using this solution, the Marangoni surface condition for 
region V can be deduced from ( 2 . 4 ~ ) .  The Stokes-flow problem for region V so 
formulated requires a numerical solution. Although we have not found this solution, 
we note that it is in region V that the maximum velocities are attained. A graph of 
the surface velocity us therefore looks as illustrated in figure 5 .  We conclude from 
(2.8), (2.18), (3.2) and the dimensions of region V that max(u,) = O(1) for all 
non-zero F. 

The shape of region VI can be deduced as follows. First, from (2.12). (2.13) and 
(3.2) we conclude that A - @M-lf when Iy( - g2M-q,  and that @ - gM-3 within 
region VI. Hence the temperature excess is confined to a region close to the wall. 
Further, when I X I ,  I yI + B2M-$,  $ - (constant) p - 4 M x 2 y  (where @ is the non-scaled 
stream function), and it can be confirmed a posteriori that heat is convected and not 
conducted in region VI. Therefore A - ml yI4M-M (or equivalently S - N5x+M-y) 
when 1x1, IyI 4 N2M-$. We note that this suggests 6 - NM-4 when x - N2M-*, which 
is in agreement with the scaling proposed for region IV. Our scalings would hence 
appear to be self-consistent. 

4. Far-field solution 
For r“ 9 1 the local Reynolds number is large. Thin viscous boundary layers are 

therefore expected to develop adjacent to the surfaces. By analogy with the solution 
for a buoyant plume (Kuiken & Rotem 1971), we begin by seeking a similarity 
solution for the viscous boundary layer on the free surface. Expanding in inverse 
powers of 2, we let 

31; - Zaf(q), q = gz-t (4.1) 

and substitute into (2.19a-c); we obtain 

4f”’+f’+2f2 = 0, ( 4 . 2 ~ )  

(4.2 b) f (0)  = f ’ (  - 00)  = 0, 4[2~f’(O)];f”(O) = 1 .  
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If we integrate ( 4 . 2 ~ )  once, and use conditions (4.2b), we find that 
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+[2nf'(O)]!r Y2dy = -1. 
--m 

(4.3) 

This is impossible, and hence there is no similarity solution of this form. The physical 
reason for this appears to be that the deceleration of the surface fluid required by 
the Marangoni condition is larger than the deceleration that can be forced on the 
interior fluid (with its accompanying inertia). Under such circumstances an interior 
maximum of the velocity profile would normally form, implying that ud(2,0) < 0. 
This is unlikely, as it implies through (2 .4~)  that the temperature increases away from 
the wall ! 

It is possible to resolve the above difficulty by assuming that the surface-tension 
distribution where r" = O( 1) establishes a surface jet in 2 + 1 which is too strong to be 
influenced to leading order by the surface-tension distribution there. So, for 2 + 1, 
the leading-order solution is a jet with ud(Z,  0) = 0, and with magnitude determined 
by the r" = O(1) region. 

A surface similarity solution of the following form is therefore sought : 

$ = b l f 0 ( q )  + 29f1(y) + ...I, y = g23 .  (4.4) 

The powers of 2 are chosen to recover the classical 'jet' similarity solution (see 
Batchelor 1967) to leading order. The resulting governing equations are 

f"' - -1J f"-l&2, f"' - -1J f"-f'f' 
0 -  0 0  1 -  0 1  0 1 3  (4.5a, b )  

together with the boundary conditions 

fo(0) = f W )  = f;( - a) = 0, ( 4 . 6 ~ )  

fi(0) = 0, [yn.f;(o)]"f;(o) = 1. (4.6b) 

The final boundary condition on fl comes from matching with the inviscid core. The 
solution for fo is 

Because the leading-order solution is an eigenfunction, the constant k can only be 
fixed by solving the full system of equations (2.19~-c) for r" = O(1). This situation 
is analogous to that for flow over a blunt-nosed semi-infinite flat plate where the 
coefficients of the eigenfunctions can only be determined by finding the solution in 
a 'Navier-Stokes' region near the leading edge. It is unlike the equivalent buoyancy 
problem, for which the leading-order solution for F 9 1 is fully determined. 

Within the inviscid core we set $ - p. Then P2F(2-, jj) = pC(0, i j )  = 0, and, from 
matching with form (4.4) and (4.7), P(Z, 0) = - 6k&. Therefore p has the solution 

fo = 6k tanh ky. (4.7) 

P = - 12k8 sin (in - ~ ) .  (4.8) 

The remaining boundary condition for fl is consequently f ;( - co) = - 2 4 3  k, and 
hence 

fi = (18k3)-ln-4tanh2ky+31/3tanh ky-2/3ky(2-3sech2ky). 
(4.9) 

The inviscid slip velocity induced by p along the rigid wall is 4k(-ij)+. This 

$ - 2ki( - j j ) ig (< ) ,  = 2d2( -g)-8. (4.10) 

generates a boundary layer, for which the appropriate scalings are 
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The governing equations and boundary conditions are those for the so-called 
‘backward boundary layer’ (Goldstein 1965) : 

6g”’+gg”+4(g’2- 1)  = 0, ( 4 . 1 1 ~ )  

g(0) = g’(0) = 0, g’(a3) = - 1. (4.11b) 

A numerical solution, with g”(0) = -0.9279, can be found to this system of equations. 
For all non-zero P i t  is therefore possible to find a consistent asymptotic expansion 

valid for r“ 9 1. If p 4 1, then the main contribution to the integral in (2 .194 comes 
from this far-field region. Substitution of (4.10) into (2.19d) then yields 

IP - 6[-6f(0)]3 k i [ r ( ; ) ] - ’ R .  (4.12) 

When (4.12) is combined with definition ( 2 . 1 3 ~ )  and the above numerical value of 
g“(O) ,  we find that 

N - 5.23ktPhM. (4.13) 

This asymptotic expansion is valid for M-9 4 P + 1, i.e. 1 4 P + M .  The lower limit, 
P - 1,  corresponds to the thermal and viscous boundary layers being of comparable 
thicknesses. It would be necessary to solve (2.19a-c) numerically in order to 
determine k .  We do not attempt this here. 

5. Discussion and conclusions 
We have considered liquid lying in the quarter-plane x > 0, y < 0. The solid 

boundary at x = 0 is insulated for y < - 1 and held at a fixed unit temperature for 
- 1 < y < 0. The boundary y = 0 is a non-deflecting thermally insulated interface 
on which thermocapillary forces exist. The temperature far from the origin is zero. 

We have assumed steady thermocapillary flow for large Marangoni numbers M .  
We assume that thin thermal boundary layers exist on the solid and free surfaces, 
and that the core flow is isothermal. Further, the Prandtl number P is assumed 
sufficiently large so that the thermal layers are of prime importance; i.e. the 
parameter regimes studied either have no viscous boundary layers or have viscous 
boundary layers that are much thicker than the thermal layers. 

Within the thermal boundary layers tangential convection balances normal 
conduction. The vertical sidewall layer has thickness M-4 and temperature order 
unity ; the horizontal free-surface layer has thickness M 4  and temperature order M-4. 
By introducing a scaled Prandtl number P = M+P, and expanding in inverse powers 
of M ,  the coupled thermoconvection problem is reduced to solving the Naviel-Stokes 
equations with novel boundary conditions. For all P the velocity field can be 
separated into (i) a Stokes-flow region, (ii) a region where all the terms in the 
Navier-Stokes equation are of equal importance, and (iii) a far-field region constituting 
of an inviscid core surrounded by viscous boundary layer. For p= 0(1) numerical 
methods are required. However, if P i s  large, then the heated strip falls totally within 
the Stokes-flow region, and we find that 

N - l.O6MI, P 9  1 .  (5.1 a )  

Conversely, if P is small, then the magnitude of the heated strip is adjacent to a 
viscous boundary layer, and 

N - 5.23ktBM, M-9 + P 4 1. (5.1 b )  
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Here k is an undetermined constant associated with an ‘ eigenfunction ’ solution of 
the free-surface viscous boundary layer. 

The assumption that the liquid-gas interface is non-deformable is valid in the limit 
of capillary number C = M ~ v K / u , ~  + O .  If the free surface is given by y = h(x) ,  then 
for p - 1 the simplified free-surface boundary conditions (2.4c), which result from 
this assumption, are correct if Ihl 4 M-4. However, for M-f 6 Ihl < 1, the free-surface 
boundary conditions must be modified to 

uy+Tz+hzTg = v-uh,  = Tg = 0 (y = h) .  (5.2) 

The core-flow problem specified by (2.19) is nevertheless correct for JhJ 4 1. This may 
be demonstrated by introducing the Prandtl transformation 

y = h(x)+M+Y (5.3) 

in place of (2 .14~) .  The substitution of the condition Ihl 4 1 into the full free-surface 
boundary conditions (Sen & Davis 1982) results in the restriction ~ v K / u , ~  4 M-3. 
Typically, the group pvK/U,d lies in the range 10-5-10-3, so that, even for reasonably 
large values of M ,  surface deflections can be ignored. 

We have also taken the liquid-gas interface to be a perfect thermal insulator. In 
actuality some heat is lost to the gas; convective transport in the gas leads to a 
generalized thermal boundary condition of the form Tu + BT = 0 on y = 0, where B 
is a surface Biot number. For - 1 the present analysis remains correct if B lies in 
the range B 4 M!. If B B @, the problem decouples, and given the temperature of 
the gas it is possible to solve for the velocity and temperature fields consecutively. 

We note that variations of surface tension with temperature are often accompanied 
by significant variations in viscosity. Furthermore, if phase changes (solidification) 
occur, complex rheological behaviour may be important. The inclusion of such effects 
is left for further study. 

The solution we have found is the thermocapillary analogue of buoyancy-driven 
convection in a quarter-plane as described by Roberts (1977). The approach and the 
methods used are similar. However, the scalings, physical balances and details are 
different. For example : 

(i) The surface velocity decreases monotonically to zero towards the corner in the 
buoyancy case, while it has a maximum in the thermocapillary case. For all the 
maximum is achieved in region IV where x = O(@M-f) ,  and max (u(x ,  0 ) )  = O(1). 
From ( 3 . 3 ~ )  and (4.12) it follows that, as p decreases, this maximum moves closer 
to the corner. 

(ii) The velocity field solution to region I11 is no longer valid in region IV in the 
thermocapillary case, whereas it remains valid in the equivalent ‘diffusion ’ region 
for the buoyancy problem. 

(iii) Unlike the thermocapillary problem there is no undetermined constant in the 
leading-order expansion of the far-field solution for the buoyancy problem. 
These differences are attributable to the differences in the driving forces: a surface- 
concentrated force depending on the details of the thermal boundary layer in the 
former problem, compared with a body force depending on an integral across the 
thermal boundary layer in the latter.? 

t If the rigid boundary at  x = 0 is replaced by a stress-free plane, then the relation ( 2 . 7 ~ )  of 
$2 is replaced by 1 - b  = 2f, giving a = b = 0, d = f = a and N = O(&). Unlike the analogous 
buoyancy-driven stress-free case (Roberts 1977) the solutions in the present thermocapillary case 
depend on the details of the thermal boundary layer and not on a quantity obtained from 
integrating across the layer. Hence numerical solutions of the governing equations are required. 
We do not pursue this case further since i t  is not directly relevant to the appllications discussed 
in $1. 
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FIGURE 6. An example slot flow; 9 = -2  is a line of symmetry. 

The highly simplified model described herein has been considered because for 
P =  O(1)  i t  is expected to  incorporate t,he dominant balances associated with 
large-Marangoni-number convection in slots of approximately unit aspect ratio. For 
instance, the scaling arguments of $2 carry through for the slot illustrated in figure 
6. pH is again the temperature of the hot wall, while pc is now the temperature of 
the central core region. Because !fc is used as the reference temperature, the 
temperature pE of the cold wall is part of the solution of the problem. pE is fixed 
by requiring that the heat flux a t  the cold wall equals that  a t  the hot wall. The 
governing equations of the flow in - 1 Q y Q 0 are again (2.9a, b ) .  The boundary 
conditions are (2.9c),  (2.16b), (2.17) and 

$ko = $koz = 0 (z = I), $ko = $koyy = 0 (y = - 1 ) .  (5.4) 

Although a numerical solution is necessary for all p, we note that the most vigorous 
thermocapillary convection will again be confined to  very small corner regions. As 
far as crystal-growing configurations are concerned, this suggests that  the worst 
convection-generated defects can be anticipated to occur near the corners. 

For p+ 1, Stokes flow fills the whole slot, and the analysis of $3  can easily be 
adapted to show that tends to a constant as p+oo. However, in the limit P+O, 
the structure of the slot-flow solution is likely to differ significantly from the solution 
proposed in $4 for the quarter-plane. In  particular, the inviscid core flow is likely 
to be rotational and have velocity magnitudes comparable to  those in the free surface 
boundary layers. If so, the possibility arises that an adverse pressure gradient will 
develop adjacent to one of the rigid boundaries, so leading to separation (see 
Wesseling’s ( 1969) comments on an analogous buoyancy problem). Nevertheless, the 
structure of the solution in $4 could be of relevance to a ‘start-up’ slot problem, as 
it may be correct for a quasi-steady solution valid some time after the initial 
transients have died out, but before vorticity has fully diffused throughout the core. 
The work of $4 is also of interest as an example of a ‘backwards’ boundary layer, 
in non-quiescent irrotational surroundings, extending over a finite length of wall (see 
Kuiken 198 1 a ,  b ) .  

Finally, we note that we have examined only the two-dimensional quarter- 
plane idealization consistent with the analysis of Marangoni convection in a 
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two-dimensional slot. The application of large-Marangoni-number convection to 
crystal growth involves flow and heat transfer in a circular cylinder. The extension 
of the scale analysis to this case is straightforward. However, inter alia the details 
of the boundary-layer solution on the rigid walls would change. 
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